2D-3D Model Design
2D Geometric Model
A 2D geometric model is a geometric model of an object as a two-dimensional figure, usually on the Euclidean or Cartesian plane. Even though all material objects are three-dimensional, a 2D geometric model is often adequate for certain flat objects, such as paper cut-outs and machine parts made of sheet metal. 2D geometric models are also convenient for describing certain types of artificial images, such as technical diagrams, logos, the glyphs of a font, etc. They are an essential tool of 2D computer graphics and often used as components of 3D geometric models, e.g. to describe the decals to be applied to a car model. Modern architecture practice “digital rendering” which is a technique used to form a perception of a 2-D geometric model as of a 3-D geometric model designed through descriptive geometry and computerized equipment.
3D Modeling
In 3D computer graphics, 3D modeling is the process of developing a mathematical representation of any surface of an object (inanimate or living) in three dimensions via specialized software. The product is called a 3D model. Someone who works with 3D models may be referred to as a 3D artist or a 3D modeler. It can be displayed as a two-dimensional image through a process called 3D rendering or used in a computer simulation of physical phenomena. The model can also be physically created using 3D printing devices. In terms of game development, 3D modeling is merely a stage in the entire development process. Models may be created automatically or manually. The manual modeling process of preparing geometric data for 3D computer graphics is similar to plastic arts such as sculpting. 3D modeling software is a class of 3D computer graphics software used to produce 3D models. Individual programs of this class are called modeling applications
Three-dimensional (3D) models represent a physical body using a collection of points in 3D space, connected by various geometric entities such as triangles, lines, curved surfaces, etc. Being a collection of data (points and other information), 3D models can be created manually, algorithmically (procedural modeling), or by scanning. Their surfaces may be further defined with texture mapping. 3D models are widely used anywhere in 3D graphics and CAD. Their use predates the widespread use of 3D graphics on personal computers. Many computer games used pre-rendered images of 3D models as sprites before computers could render them in real-time. The designer can then see the model in various directions and views, this can help the designer see if the object is created as intended to compared to their original vision. Seeing the design this way can help the designer or company figure out changes or improvements needed to the product.
Representation
A modern render of the iconic Utah teapot model developed by Martin Newell (1975). The Utah teapot is one of the most common models used in 3D graphics education.
Almost all 3D models can be divided into two categories:
Solid – These models define the volume of the object they represent (like a rock). Solid models are mostly used for engineering and medical simulations, and are usually built with constructive solid geometry.
Shell or boundary – These models represent the surface, i.e. the boundary of the object, not its volume (like an infinitesimally thin eggshell). Almost all visual models used in games and film are shell models.